

Syllabus for B.Sc. Microbiology (UG)

CHOICE BASED CREDIT SYSTEM (CBCS) I & II Semester Microbiology Papers

Under-Graduate (UG) Program Framed According to the National Education Policy (NEP 2020)

From the academic year 2021-22

MODEL CURRICULUM

Name of the Degree Program: BSc (Basic/Hons.) Discipline Core: Microbiology Total Credits for the Program: B.Sc. Basic - 136 and B.Sc. Hons. - 176 Starting year of implementation: 2021-22

Program Outcomes: Competencies need to be acquired by the candidate for securing B.Sc. (Basic) or B.Sc. (Hons)

Introduction:

The NEP-2020 offers an opportunity to effect paradigm shift from a teacher-centric to student-centric higher education system in India. It caters skill based education where the graduate attributes are first kept in mind to reverse-design the programs, courses and supplementary activities to attain the graduate attributes and learning attributes. The learning outcomes-based curriculum framework for a degree in B.Sc. (Honours) Microbiology is intended to provide a comprehensive foundation to the subject and to help students develop the ability to successfully continue with further studies and research in the subject while they are equipped with required skills at various stages. Effort has been made to integrate use of recent technology and use of MOOCs to assist teaching-learning process among students. The framework is designed to equip students with valuable cognitive abilities and skills so that they are successful in meeting diverse needs of professional careers in a developing and knowledge-based society. The curriculum framework takes into account the need to maintain globally competitive standards of achievement in terms of knowledge and skills in Microbiology and allied courses, as well develop scientific orientation, spirit of enquiry, problem solving skills, human and professional values which foster rational and critical thinking in the students. This course serves a plethora of opportunities in different fields right from classical to applied aspects in Microbiology.

GRADUATE ATTRIBUTES IN B.Sc. (Hons.) Microbiology

Some of the characteristic attributes a graduate in Microbiology should possess are:

- Disciplinary knowledge and skills
- Skilled communication
- Critical thinking and problem solving capacity
- Logical thinking and reasoning
- Team Spirit & Leadership Quality
- Digital efficiency
- Ethical awareness / reasoning
- National and international perspective
- Lifelong learning

Flexibility:

• The programmes are flexible enough to allow liberty to students in designing them according to their requirements. Students may choose a single Major, one Major with a Minor, and one Major with two Minors. Teacher Education or Vocational courses

may be chosen in place of Minor/s below listed are the various options students may choose from.

- One Major subject/discipline, Two Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses including Extracurricular Activities.
- One Major and one Minor subject/discipline along with Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses including Extracurricular Activities
- Two Major subject/disciplines along with Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses, including Extracurricular Activities.
- One Major subject/discipline and one Vocational course along with Languages, Generic Electives, Ability Enhancement and Skill Development and courses including Extracurricular Activities.
- One Major Discipline and One Education Discipline along with Languages, Generic Electives, Ability Enhancement and Skill Development Courses including Extracurricular Activities.

By the end of the program the students will be able to:

- Acquire knowledge and gain understanding of concepts in microbiology and its applications in **pharma**, food, agriculture, beverages, and nutraceutical industries.
- Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance.
- Competent to apply the knowledge gained for conserving the environment and resolving the environment related issues.
- Learning, practicing professional skills in handling microbes and contaminants in laboratories and production sectors.
- Exploring the microbial world and analyzing the specific benefits and challenges.
- Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.

- Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.
- Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyze outcomes by adopting scientific methods, thereby improving the employability.
- Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	40	60
Experiential Learning		
(Internships/MOOC/	40	60
Swayam etc.)		

Assessment: Weightage for assessments

*In lieu of the research Project, two additional elective papers/ Internship may be offered in 8th semester.

Progressive Certificate, Diploma, Bachelor's Degree or Bachelor's Degree with Honours provided at the end of each year of exit of the Four-years Undergraduate Programme.

	EXIT OPTIONS	Credits Required
1.	Certificate upon the successful completion of the First Year (Two Semesters) of the multidisciplinary Four-years Undergraduate Programme/Five-years Integrated Master's Degree Programme.	44-48
2.	Diploma upon the successful completion of the Second Year (Four Semesters) of the multidisciplinary Four-years Undergraduate Programme/Five-years Integrated Master's	88-96

	Degree Programme.	
3.	Basic Bachelor's Degree at the Successful Completion of the Third Year (Six Semesters) of the multidisciplinary Four-years Undergraduate Programme/Five-years Integrated Master's Degree Programme.	132-144
4.	Bachelor's Degree with Honours in a Discipline at the Successful Completion of the Fourth Year (Eight Semesters) of the multidisciplinary Four-years Undergraduate Programme/Five-years Integrated Master's Degree Programme	176-192

By the end of the program the students will be able to:

- 1. Acquire and understand the concepts of microbiology and its application in **pharma**, **food**, **agriculture**, **beverages**, **and nutraceutical industries**.
- 2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance.
- 3. Gain knowledge for conserving the environment and resolve the environmental related issues.
- 4. Apply the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture and food sectors.
- 5. Understand and apply good laboratory and good manufacturing practices in microbial quality control.
- 6. Understand biochemical and physiological aspects of microbes and develop broader perspectives to identify innovative solutions for present and future challenges posed by microbes.
- 7. Understand the application of microbes in forensic and working knowledge about clinical microbiology.
- 8. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- 9. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyze outcomes by adopting scientific methods, thereby improving the employability.
- 10. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of Microbiology.

IIA. Model Program Structures for the Under-Graduate Programs in Bengaluru City University and its affiliated Colleges. Subject: Microbiology

	Discipline Core (DSC)(Credits)	Discipline Elective(DSE) /	Ability Enhancement Compulsory Courses (AECC),Languages (Credits) (L+T+P)				5	Skill Enhancement Courses (SEC)	
Semester	(L+T+P)	Open Elective (OE) (Credits) (L+T+P)			Skill based (Credits) (L+T+P)	Value based (Credits) (L+T+P)	5		
I	DSC-T1 MBL 101 A1- General Microbiology (04) DSC-P1 MBL 101 General Microbiology (02)	OE-T1, MBL-301 Microorganisms for Human Welfare (03)	L1-1(3), L2- 1(3) (4 hrs. each)		SEC-T1, MBL-701, Microbiological Techniques (1+0+2)	Physical Education for Health &Wellness fitness(1)(0+0+2)(1)(0+0+2)	25		
Ш	DSC-T2 MBL 102 A2-Microbial Biochemistry and Physiology (04) DSC-P2 MBL 102 Microbial Biochemistry and Physiology (02)	OE-T2, MBL 302, Environmental Microbiology and Human Health (3)	L1-2(3), L2- 2(3) (4 hrs. each)	Environmental Studies (2)		Physical Education - NCC/NSS/R&R(S&	25		
	Exit option with Certificate in Microbiology (50 Credits)								

B.Sc. Microbiology (Basic / Hons.), First Semester

Course Title: DSC-T1MBL101, General Microbiology (A1)					
Course Code: DSC-T1 MBL101 L-T-P per week: 4-0-0					
Total Contact Hours: 56	Course Credits: 04				
Formative Assessment Marks: 40	Duration of ESA/Exam: 3 h				
Model Syllabus Authors: Curriculum Committee	Summative Assessment Marks: 60				

Course Prerequisite (s): PUC or +2 (Life Sciences as one of the core disciplines)

Course Outcomes (COs): At the end of the course the students will be able to:

- 1. Thorough knowledge and understanding of concepts of Microbiology.
- 2. Learning and practicing professional skills in handling microbes.
- 3. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.

Course Articulation Matrix: Mapping of Course Outcomes (Cos) with Program Outcomes (Pos 1-12)

Sl.	Course Outcomes (COs) /	T1	1	2	3	4	5	6	7	8	9	10	11
No	Program Outcomes (POs)		-	_	0	-	0	Ũ		0	-	10	
Ι	Core competency	Х											
II	Critical thinking	Х											
III	Analytical reasoning	Х											
IV	Research skills	Х											
V	Team work	Х											

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

B.Sc. Microbiology	(Basic)	/ Hons.).	First Semester
DISCIMINICIONIONS	(Duble /	,	

D.Sc. Microbiology (Dasic / Holis.), First Schlester	
Content of Course 01: Theory: DSC-T1 MBL101: General Microbiology	56 h
Unit – 1: Historical development and origin of microorganisms	14 h
Historical development of Microbiology – Theory of spontaneous generation, Biogenesis and Abiogenesis. Contributions of Antony van Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Edward Jenner, Alexander Fleming, Martinus Beijerinck, Sergei Winogradsky and Elie Metchnikoff. Contribution of Indian scientists in the field of Microbiology. Fossil evidences of microorganisms. Origin of life, primitive cells and evolution of microorganisms. Microscopy- working principle, construction and operation of simple and compound microscopes.	
Unit – 2: Staining, sterilization and preservation techniques	14 h
 Staining: Nature of stains, principles, mechanism, methods and types of staining-simple, Differential-Gram staining, acid fast staining, capsule staining, endospore, inclusion bodies. Sterilization: Principles, types and techniques - physical and chemical. Preservation of microorganisms: Methods of preservation, slant culture, stab culture, soil culture, mineral oil overlaying, glycerol preservation, Lyophilization. Unit – 3: Prokaryotic microorganisms Overview of prokaryotic cell structure: Size, shape, arrangement. Ultra structure of prokaryotic cell: bacterial and archaeal - cell wall and cell membrane. Components external to cell wall - capsule, slime, s-layer, pili, fimbriae, flagella; structure, motility, chemotaxis. Cytoplasmic matrix - Cytoskeleton, ribosome, inclusion granules: Composition and function. Nuclear Material – bacterial structure (its 	14 h
granules: Composition and function. Nuclear Material – bacterial structure (its differences with the Eukaryotic chromosome); Extra Chromosomal material. Bacterial Endospore - Examples of spore forming organisms, habitats, function, formation and germination. Reproduction in bacteria.	
Unit – 4: Eukaryotic microorganisms	14 h
Overview of eukaryotic cell: Types of cells; Structure and function of organelles- cell wall, cell membrane, cytoplasmic matrix, cytoskeleton, endoplasmic reticulum, Golgi complex, peroxisomes, lysosomes, vesicles, ribosomes, mitochondria, chloroplast and nucleus. Structure and functions of flagella. Reproduction in fungi-Vegetative, asexual and sexual	

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment					
Assessment Occasion	Weightage in marks				
Assignment/ Field Report/ Project	15 Marks				
Test	20 Marks				
Participation in class	05 marks				
Total	40 Marks				

General Microbiology Laboratory Content: Course 01: Practicals: DSC-P1MBL101: General Microbiology

Course Title: General Microbiology	Course Credits: 02
Course Code: DSC-P1MBL101	L-T-P per week: 0-0-4
Total Contact Hours: 28	Duration of ESA/Exam: 4 h
Formative Assessment Marks: 25	Summative Assessment Marks: 25

- 1. Microbiological laboratory standards and safety protocols.
- 2. Operation and working principles of light and compound microscope.
- 3. Working principle and operations of basic equipments of microbiological laboratory (Autoclave, oven, incubator, LAF, pH meter, spectrophotometer, colorimeter, vortex, magnetic stirrer etc.).
- 4. Isolation and identification of microorganisms from natural sources (Algae, Yeast, filamentous fungi and protozoa).
- 5. Bacterial motility by hanging drop method.
- 6. Simple staining Negative staining.
- 7. Differential staining Gram staining.
- 8. Acid fast staining.
- 9. Structural staining Flagella and capsule.
- 10. Bacterial endospore staining.
- 11. Staining of reserved food materials (granular).
- 12. Staining of fungi by lactophenol cotton blue.

Text Books/References

- 1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore.869 pp.
- 2. Atlas, R.M. 1984. Basic and practical microbiology. Mac Millan Publishers, USA.987pp.
- 3. Black, J.G. 2008. Microbiology principles and explorations. 7th edition. John Wiley and Sons Inc., New Jersey. 846pp.
- 4. Dubey, R.C. and Maheshwari, D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd.
- Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. 2009. Brock Biology of Microorganisms, - 12th edition, Pearson International edition, Pearson Benjamin Cummings.
- 6. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology Concepts and Applications, International ed, McGraw Hill.
- 7. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.
- 8. Schlegel, H.G. 1995. General Microbiology. Cambridge University Press, Cambridge, 655 pp.

- 9. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited. International, edition 2008, McGraw Hill.
- 10. Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition, McGraw Hill.
- 11. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pvt. Ltd., San Francisco.958 pp.
- 12. Tortora, G.J., Funke, B.R., Case C.L. 2008. Microbiology an Introduction, 10th ed. Pearson Education.
- 13. Willey, J. M., Sherwood, L., Woolverton, C. J., & Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/Monograph	10
Test	10
Participation in class	05
Total	25

Course 02: Theory: OE-T1MBL301: Microorganisms for Human Welfare

Course Title: Microorganisms for Human Welfare	Course Credits: 03		
Course Code: OE-T1MBL301	L-T-P per week: 0-0-3	3	
Total Contact Hours: 42h	Duration of ESA/Exa	m: 4h	
Formative Assessment Marks: 30	Summative Assessme 45	nt Marks:	
Unit – 1: Food and Fermentation		14 h	
Fermented Foods – Types, nutritional values and health benefits Probiotics, prebiotics, synbiotics and nutraceuticals.			
Fermented Products – Alcoholic and non-alcoholic beverages, dairy products.			
Unit – 2: Agriculture			
Bio-fertilizers and bio-pesticides - types and app microorganisms in agriculture, AM fungi, Mushroom production.			
Unit – 3: Pharmaceutical Industry			
Drugs – types, development and applications.			
Antibiotics – types, functions and antibiotic therapy. Vaccines – types, properties, functions and schedules.			

Texbooks/References

- 1. Ananthnarayanan, R and Jeyaram Panicker, C. K. 2010.Textbooks of Microbiology, Orient Longman.
- Dubey, R.C. and Maheshwari, D.K. 2013. A Textbook of Microbiology –2nd edition (S chand & Co. N. Delhi).
- 3. Michael, J. Pelczar, Jr. E.C.S., Chan, Noel R. 1998. Krieg Microbiology Tata McGraw-Hill Publisher.
- 4. Pelczar, M.J., Chan E.C.S. and Kreig, N.R. 1993. Microbiology 5th edition (Tata McGraw-Hill, New Delhi)
- Prescott, L.M., Harley, J.P. and Klein, D.A., 2007. Microbiology –7th edition (Wm. C. Brown Publishers, USA) Elementary Microbiology – Modi, HA (vol. I), 1st edition (Ekta Pakashan, Nadiad).
- 6. Prescott, M.J., Harly, J.P. and Klein 2002. Microbiology 5ft Edition, WCB McGraw Hill, New York.
- 7. Sateesh, M.K. 2010. Bioethics and Biosafety. IK International Pvt Ltd. 2. Dubey, RC A Textbook of Biotechnology. S Chand Publications.
- 8. Singh, B.D. 2013. Expanding Horizons in Biotechnology. Kalyani Publication.
- 9. Sree Krishna, V. 2007. Bioethics and Biosafety in Biotechnology, New age international publishers
- Willey, J.M., Sherwood L.M and Woolverton C.J., Prescott, Harley and Klein's. 2013. Microbiology. McGraw Hill Higher education. 9th Edition.

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	15
Written Assignment/Presentation/Project / Term Papers/Seminar	10
Class performance/Participation	05
Total	30

Skill Enhancement Course in Microbiology Course 03: Theory: SEC-T1MBL701, Microbiological Techniques

Learning Outcomes:

- Demonstrate skills as per National Occupational Standards (NOS) of "Lab Technician/Assistant" Qualification Pack issued by Life Sciences Sector Skill Development Council-LFS/Q0509, Level3.
- Perform microbiology and analytical techniques. Knowledge about environment, health, and safety (EHS), good laboratory practices (GLP), good manufacturing practices (GMP) and standard operating procedures (SOP)
- Demonstrate professional skills at work, such as decision making, planning, and organizing, Problem solving, analytical thinking, critical thinking and documentation.
- Principles which underlies sterilization of culture media, glassware and plastic ware to be used for microbiological work.
- Principles of a number of analytical instruments which the students have to use during the study and also later as microbiologists for performing various laboratory manipulations.
- Handling and use of microscopes for the study of microorganisms which are among the basic skills expected from a practicing microbiologist. They also get introduced to a variety of modifications in the microscopes for specialized viewing.

Course content:03				
Course Title: SEC-T1MBL701: Microbiological Techniques				
Total Contact Hours: 14 HoursDuration of ESA:01Hrs.				
Formative Assessment Marks: 10	Summative Assessment Marks: 15			
Unit-1:				
Microbiological culture med	ia: Types, Composition, Preparation,			
Application and storage; Ingre	dients of media, natural and synthetic			
media, chemically defined media	a, complex media, selective, differential,			
indicator, enriched and enrichment media.				
• Isolation and cultivation of microorganisms: Collection of samples,				
processing of samples, serial dil	processing of samples, serial dilution, inoculation of samples, incubation			
and observations of microbial c	and observations of microbial colonies. Morphological characterization			
of microorganisms -Colony characteristics, Microscopic characters,				
biochemical / physiological tests or properties and identification. Sub				
culturing of microorganisms and pure culture techniques. Preservation of				
microorganisms.				
• Advanced Microscopic Skills: Different types of microscopes - Phase				
contrast, Bright Field, Dark Field, Fluorescent, Confocal, Scanning and				
Transmission Electron Microscopes, Scanning Probe Microscopy				

• **Centrifugation, Chromatography and spectroscopy:** principles, types, instrumentation, operation and applications.

Lab content of Skill Enhancement Course in Microbiology Course - 03: Practicals: SEC-P1MBL701, Microbiological Techniques

Course content:03	
Course Title: SEC-P1MBL701: Mid	crobiological Techniques
Total Contact Hours: 28 Hours	Duration of ESA:02Hrs.
Formative Assessment Marks: 25	Summative Assessment Marks: 25

- 1. Methods and practices in Microbiology lab: MSDS (Material Safety and Data Sheet), Good Clinical Practices (GCP), Standard Operating Procedure (SOP), Good Laboratory Practices (GLP), Good Manufacturing Practices (GMP).
- 2. Usage and maintenance of basic equipments of microbiology lab: Principles, calibrations, and SOPs of balances, pH meter, autoclave, incubators, laminar air flow (LAF) and biosafety cabinets, microscopes, homogenizers, stirrers.
- 3. Preparation of different types of bacterial culture media.
- 4. Preparation of different types of fungal culture media.
- 5. Preparation of different types of algal culture media.
- 6. Isolation and cultivation of bacteria, actinobacteria, fungi and algae.
- 7. Identification and characterization of bacteria, actinobacteria, fungi and algae.
- 8. Biochemical and physiological tests for identification of bacteria.
- 9. Separation of biomolecules by paper/thin layer chromatography.
- 10. Demonstration of column chromatography.
- 11. Preparation of permanent slides (bacteria, fungi and algae).
- 12. Procedures for documentation, lab maintenance, repair reporting.

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/Monograph	10
Test	10
Participation in class	05
Total	25

B.Sc. Microbiology (Basic / Hons.), Second Semester

Course Title: DSC-T2 MBL102, Microbial Biochemistry and Physiology (A2)				
Course Code: DSC-T2 MBL102	L-T-P per week: 4-0-0			
Total Contact Hours: 56	Course Credits: 04			
Formative Assessment Marks: 40	Duration of ESA/Exam: 3 h			
Model Syllabus Authors: Curriculum Committee	Summative Assessment Marks: 60			

Course Outcomes (COs): At the end of the course the students will be able to:

- 1. Acquire thorough knowledge and understanding of concepts of Microbiology.
- 2. Learn and practice professional skills in handling microbes.
- 3. Gain thorough knowledge and apply good laboratory and good manufacturing practices in microbial quality control.

Course Articulation Matrix: Mapping of Course Outcomes (Cos) with Program Outcomes (Pos 1-12)

Sl.	Course Outcomes (COs) /	T1	1	2	3	4	5	6	7	8	9	10	11
No	Program Outcomes (POs)					-	•	•	-)	-	- •	
Ι	Core competency	Х											
II	Critical thinking	Х											
III	Analytical reasoning	Х											
IV	Research skills	Х											
V	Team work	Х											

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

B.Sc. Microbiology (Basic / Hons.), Second Semester

Content of Course 1: Theory: DSC-T2MBL102: Microbial Biochemistry and	56h
Physiology Unit – 1: Biochemical concepts	14h
•	1711
Basic Biochemical Concepts: Major elements of life and their primary characteristics, atomic and chemical bonds – covalent, non-covalent, ionic,	
hydrogen and Vander Waal's Forces.	
Biological Solvents: Structure and properties of water molecule, water as an universal solvent, polarity, hydrophilic and hydrophobic interactions, acids, bases,	
electrolytes, pH and buffers, Henderson-Hasselbalch equation.	
Unit – 2: Macromolecules	14h
Carbohydrates: Definition, classification, structure and properties.	
Amino acids and proteins: Definition, structure, classification and properties of	
amino acids, structure and classification of proteins.	
Lipids and Fats: Definition, classification, structure, properties and importance of	
lipids; fatty acids: types and classification.	

Porphyrins and Vitamins: Definition, structure, properties and importance of	
chlorophyll, cytochromes and hemoglobin.	
Unit – 3: Microbial growth and nutrition	14h
Microbial Growth: Definition, growth curve, phases of growth, growth kinetics, generation time. Synchronous culture, continuous culture (chemostat and turbidostat), coulter cultures, diauxic growth. Measurement of growth: Direct microscopic count - Haemocytometer; viable count, membrane filtration; electronic Counting; Measurement of cell mass; Turbidity measurements - Nephelometer and spectrophotometer based techniques; Measurement of cell constituents. Growth yield. Influence of environmental factors on growth. Microbial Nutrition: Microbial nutrients, macro and micronutrients, classification of organisms based on nutritional requirements. Membrane Transport: Structure and organization of biological membranes, Types of cellular transport - passive, facilitated, active, group translocation, membrane bound protein transport system, carrier models, liposomes, ion channels, Na ⁺ K ⁺ -ATPase.	
Unit – 4: Bioenergetics, Respiration and Photosynthesis	14h
 Bioenergetics: Free energy, enthalpy, entropy, laws of thermodynamics. High energy compounds: classification, structure and significance, oxidation reduction reactions, equilibrium constant, redox potential. Microbial Respiration: Electron transport chain, protein translocation, and substrate level phosphorylation, oxidative phosphorylation, inhibitors of ETC and mechanism, structure and function of ATP synthase and ATP synthesis. Fermentation reactions (homo and hetero lactic fermentation) Microbial Photosynthesis: Light reaction: Light harvesting pigments, Photophosphorylation, CO₂ fixation pathways: Calvin cycle, CODH pathway, Reductive TCA pathway. 	

Text Books/References

- 1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp.
- 2. Atlas, R.M. 1984. Basic and practical Microbiology. Mac Millan Publishers, USA. 987 pp.
- 3. Black, J.G. 2008. Microbiology principles and explorations. 7th edition. John Wiley and Sons Inc., New Jersey 846 pp.
- 4. Boyer, R. 2002, Concepts in Biochemistry 2nd Edition, Brook/Cole, Australia.
- 5. Caldwell, D.R. 1995 Microbial Physiology and Metabolism. Brown Publishers
- 6. Dubey R.C. and Maheshwari D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd.
- 7. Felix Franks, 1993. Protein Biotechnology, Humana Press, New Jersey.
- 8. Harper, 1999. Biochemistry, McGraw Hill, NewYork
- 9. Lodish, H.T. Baltimore, A. Berck B.L. Zipursky, P. Mastsydaire and J. Darnell. 2004. Molecular Cell Biology, Scientific American Books, Inc. Newyork
- 10. Madigan, M.T., Martinko J.M., Dunlap P.V., Clark D.P. 2009. Brock Biology of Microorganisms, 12th edition, Pearson International edition Pearson Benjamin

Cummings.

- 11. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology Concepts and Applications, International ed, McGraw Hill.
- 12. Moat, A. G., Foster, J.W. Spector. 2004. Microbial Physiology 4th Edition Panama Book Distributors.
- 13. Nelson, and Cox, 2000. Lehninger Principles of Biochemistry, Elsevier Publ.
- 14. Palmer, T. 2001. Biochemistry, Biotechnology and Clinical Chemistry, Harwood Publication, Chichester.
- 15. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.
- Schlegel, H.G. 1995. General Microbiology. Cambridge University Press Cambridge, 655 pp.
- 17. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited. International, edition 2008, McGraw Hill.
- 18. Stryer, L, 1995. Biochemistry, Freeman and Company, New York.
- 19. Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition McGraw Hill.
- 20. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th edition. Pearson Education Pvt. Ltd., San Francisco. 958pp.
- 21. Tortora, G.J., Funke, B.R., Case, C.L. 2008. Microbiology-An Introduction, 10th ed. Pearson Education.
- 22. Voet and Voet, 1995; Biochemistry, John Wiley and Sons, New York.
- 23. Willey, J. M., Sherwood, L., Woolverton, C. J., and Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

Formative Assessment		
Assessment Occasion	Weightage in marks	
Assignment/ Field Report/ Project	15 Marks	
Test	20 Marks	
Participation in class	05 marks	
Total	40 Marks	

Microbial Biochemistry and Physiology Laboratory Content Course 01: Practicals: DSC-P2, MBL102: Microbial Biochemistry and Physiology

Course Title: Microbial Biochemistry and Physiology	Course Credits: 02
Course Code: DSC-P1 MBL102	L-T-P per week: 0-0-4
Total Contact Hours: 28	Duration of ESA/Exam: 03 h
Formative Assessment Marks: 25	Summative Assessment Marks: 25

- 1. Preparation of normal and molar solutions.
- 2. Calibration of pH meter and determination of pH of natural samples.
- 3. Preparation of buffer solutions (any 4).
- 4. Qualitative analysis of carbohydrates.
- 5. Qualitative analysis of amino acids and proteins.
- 6. Qualitative analysis of lipids.
- 7. Estimation of reducing sugar by DNS method.
- 8. Estimation of protein by Lowry's method.
- 9. Determination of saponification values and iodine number of lipids/fatty acids.
- 10. Determination of bacterial growth by turbidometric method & calculation of generation time.
- 11. Effect of pH, temperature and salt concentration on bacterial growth.
- 12. Demonstration of aerobic and anaerobic respiration in microbes.

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/Monograph	10
Test	10
Participation in class	05
Total	25

Course Title: Environmental Microbiology and Human	n Course Credits: 03	
Health		
Course Code: OE-T2MBL302	L-T-P per week:	0-0-3
Total Contact Hours: 42h	Duration of ESA	/Exam: 3h
Formative Assessment Marks: 30	Summative	Assessment
	Marks: 45	
Unit – 1: Soil and Air Microbiology		14 h
Soil and air as a major component of environment. Types, prop	erties and uses of	
soil and air. Distribution of microorganisms in soil and air	. Major types of	
beneficial microorganisms in soil. Major types of harmful microo	organisms in soil.	
Unit – 2: Water Microbiology		14 h
Water as a major component of environment. Types, properties a	nd uses of water.	
Microorganisms of different water bodies. Standard qualities of c	lrinking water	
Unit – 3: Microbial Diseases and Control		14 h
Public health hygiene and communicable diseases. Survey an	d surveillance of	
microbial infections. Air borne microbial diseases, water borne n	nicrobial diseases,	
Food borne microbial infections. Epidemiology of microbial	infections, their	
detection and control.		

Text Books/References

- 1. Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp.
- 2. Atlas, R.M. 1984. Basic and practical Microbiology. Mac Millan Publishers, USA. 987 pp.
- 3. Black, J.G. 2008. Microbiology principles and explorations. 7th edn. John Wiley and Sons Inc., New Jersey 846 pp.
- 4. Dubey R.C. and Maheshwari D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd.
- Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. 2009. Brock Biology of Microorganisms, - 12th edition, Pearson International edition, Pearson Benjamin Cummings.
- 6. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology Concepts and Applications, International ed, McGraw Hill.
- 7. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.
- 8. Schlegel, H.G. 1995.General Microbiology. Cambridge University Press, Cambridge, 655 pp.
- 9. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited. International, edition 2008, McGraw Hill.
- Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition, McGraw Hill.
- 11. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pvt. Ltd., San Francisco.958 pp.
- 12. Tortora, G.J., Funke, B.R., Case C.L. 2008. Microbiology an Introduction, 10th ed. Pearson Education.

13. Willey, J. M., Sherwood, L., Woolverton, C. J., and Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	15
Written Assignment/Presentation/Project / Term Papers/Seminar	10
Class performance/Participation	05
Total	30

Pedagogy: Chalk and Talk, PPT, Group discussion, Seminars, Field visit

Structure of B.Sc. Honours in MICROBIOLOGY (Model II A)

Model Curriculum

Program Name	B.Sc. Discipline	Total Credits for the Program	Credits
Core	Microbiology	Starting year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to:

(Refer to literature on outcome-based education (OBE) for details on Program Outcomes)

- PO1. Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.
- PO2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance
- PO3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.
- PO4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.

PO5. Exploring the microbial world and analysing the specific benefits and challenges.

- PO6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.
- PO7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- PO8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- PO9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.
- PO10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- PO11. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyse outcomes by adopting scientific methods, thereby improving the employability.
- PO12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Contents of Courses for B.Sc. Microbiology as Major

Model II A

er		e ry	al	S		Mar	ks
Semester	Course code	Course Category	Theory / Practical	Credits	Paper Title	S.A	I.A
		DSC- 7	Theory	3	Microbial Diversity	60	40
3.			Practical	2	Microbial Diversity	25	25
		OE- 3	Theory	3	Microbial Entrepreneurship	60	40
		DSC- 8	Theory	3	Microbial Enzymology and Metabolism	25	25
4.		D3C- 0	Practical	2	Microbial Enzymology and Metabolism	60	40
		OE- 4	Theory	3	Human Microbiome	25	25
	Exit Option wi	th Diploma in	1 Microbiology	v (100 Credi	ts)	1	I

Model Curriculum

Program Name	BSc Microbiology		Semester	Third Sem
Course Title	Microbial Diversity			
Course No.	MBL-103 DSC -3T		No. of Theory Credits	4
Contact hours	56 hrs		Duration of ESA/Exam	2 Hours
Formative Assessment Marks 40			Summative Assessment Ma	arks 60

Course Pre-requisite (s):.	
 Course Outcomes (COs): At the end of the course the student should be able to: 1. Acquire knowledge about microbes and their diversity 2. Study the characteristics, classification and economic importance of Prokaryotic and Eukaryo microorganisms. 3. Gain knowledge about viruses and their diversity 	tic
Content	Hrs
Unit–I	08 Hrs
Biodiversity and Microbial Diversity	
Concept, definition and levels of biodiversity; Biosystematics - Major classification systems-	
Numerical and Chemotaxonomy. Study and measures of microbial diversity; Conservation and	
Economic values of microbial diversity.	
Unit -II	
Diversity of Prokaryotic Microorganisms	16 Hrs
Distribution, factors regulating distribution.	
An overview of Bergey's Manual of Systematic Bacteriology.	
General characteristics; Classification; Economic importance of:	
Archaea: Thermus aquaticus, Methanogens	
Bacteria: Escherichia coli, Bacillus subtilis,	
Cyanobacteria: Microcystis, Spirulina	
Actinomycetes: Streptomyces, Nocardia, Frankia	
Rickettsiae: Rickettsia rickettsi	
Chlamydiae: Chlamydia trachomatis	
Spirochaetes: Trepanema pallidum, Mycoplasma	

Unit -III	
Diversity of Eukaryotic Microorganism	16 Hrs
General characters; Classification- Economicimportance	
Fungi: Ainsworth classification- detailed study up to the level of classes, Salient features and	
reproduction. Type study: Rhizopus, Saccharomyces, Aspergillus, Agaricus, Fusarium	
Algae: Occurrence, distribution, and symbiotic association- Lichen; thallus organization and	
types. Type study: Chlorella, Diatom, Gracilaria,	
Protozoa: Classification up to the level of classes. Type study: Euglena, Trichomonas,	
Plasmodium, Trypanosoma	
Unit -IV	16 Hrs
Diversity of Viruses	
General structure, Isolation, purification and culturing of viruses. Principles of Viral	
Taxonomy- Baltimore and ICTV and the recent trends.	
Capsid symmetry- Icosahedral, helical, complex	
Animal: HIV, Corona, Ortho and Paramyxovirus, Oncogenic virus	
Plants: TMV, Papaya virus	
Microbial: T4, lambda, cyano and myco phages.	
Sub viral particles. Viroids and Prions.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

	Program Outcomes (POs))						
Course Outcomes (COs) / Program Outcomes (POs)		2	3	4	5	6	7	8	9	10	11	12
Knowledge about microbes and their diversity		~			~			~				
Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes	2	√	√		 ✓ 							
Knowledge about viruses and their diversity						~				~		
Pedagogy: Lectures, Seminars, Industry Visits, Debate	s, Qu	iz an	d As	signm	nents	1	1			1		1
Summative Assessment = 60 Marks												
Formative Assessment Occasion / type				Wei	ghta	ge ir	n Ma	rks				
Attendance	10											
Seminar and Assignment	10											
Debates and Quiz	10											
Test	10											
Total	60 ma	rks +	- 4 0 r	narks	= 10	0 m	arks					

Course Title	Microbial Div	ersity (Practical)	Practical Credits	2					
Course No.	MBL-103	DSC-4P	Contact hours	26 Hrs					
		Content							
		of bacteria from soil, air a							
	on, and identification	5							
	on, and identification	•							
•	1 01	cteria - cocci, bacilli, vibri	io and spiral						
		cell size by Micrometry,							
	count by haemocyto	<i>Nostoc, Microcystis Spiru</i>	lina						
21		lla, Diatoms, Gracilaria	umu						
~ 1	.	us, Saccharomyces, Agaric	2115						
7 1		lena, Plasmodium, Trypano							
	•	dels - HIV, TMV, Corona							
Practical a	ssessment								
		Assessment							
	Formative asse	essment	Summative Assessme	ent Total Marks					
Assessment	Occasion / type	Weightage in Marks	Practical Exam	I otai Iviarks					
F	Record	5							
	Test 10								
Att	Attendance 5 25 50								
Per	Performance 5								
,	Total 25 25								

¹ Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York

- 2 Brock, T.D. and Madigan, M.T. 1988. Biology of Microorganisms, V Edition. Prentice Hall. New Jersey
- 3 Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2001. Introduction to Modern Virology. 5th edition.Blackwell Publishing, USA
- 4 Flint, S.J., Enquist, L.W., Drug, R.M., Racaniello, V.R. and Skalka, A.M. 2000. Principles of Virology-Molecular Biology, Pathogenesis and Control. ASM Press, Washington, D.C
- 5 Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 2008. 7th International, edition ,McGraw Hill
- 6 Vashishta, B.R, Sinha A.K and Singh V. P. 2005. Botany Fungi, S. Chand and Company Limited, New Delhi
- 7 Kotpal, R.L Protozoa 5th Edition 2008. Rastogi Publications, Meerut, New Delhi.
- 8 Madigan, M.T. Martinko, J.M, Dunlap, P. V. Clark, D. P. 2009. Brock Biology of Microorganisms, 12thedition, Pearson Benjamin Cummings
- 9 G. J. Tortora, B. R. Funke, C. L. 2008. Microbiology An Introduction, Case, 10th edition., Pearson Education, UK.

10 Stanier, 1987, Ingraham *et al*, General Microbiology, 4th and 5th edition Macmillan education limited

11 Pelczar Jr. Chan, Krieg, Microbiology- Concepts and Applications, International edition, McGraw Hill

- 12 Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp, 4th edition.
- 13 Vashishta, B.R Sinha A.K and Singh V. P. 2005. Botany Algae S. Chand and Company Limited, New Delhi
- 14 Dubey R. C., and Maheshwari, D. K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd, New Delhi
- 15 K. P. Talaro, 2009. Foundations in Microbiology, 7th International edition, McGraw Hill

Date:

Subject Committee Chairperson

Model Curriculum

Program Name	BSc Microbiolog	3Y	Semester	Third Sem				
Course Title	Microbial Entrepreneurship							
Course Code	MBL:303 OE-3		No. of Theory Credits	3				
Contact hours	Lecture		Duration of ESA/Exam	2 Hours				
Practical								
Formative Assessment Marks40Summative Assessment Marks60				arks 60				

Course Pre-requisite(s):	
Course Outcomes (COs): At the end of the course the student should be able to:	
1. Demonstrate entrepreneurial skills	
2. Acquire knowledge on Industrial entrepreneurship	
3. Acquire knowledge on Healthcare Entrepreneurship	
Content	42 Hrs
Unit–I	14 Hrs
General Entrepreneurship	
Entrepreneurship and microbial entrepreneurship - Introduction and scope, Business	
development, product marketing, HRD, Biosafety and Bioethics, IPR and patenting, Government	
organization/ Institutions/ schemes, Opportunities and challenges.	
Unit -II	14 Hrs
Industrial Entrepreneurship	
Microbiological Industries – Types, processes and products, Dairy products, Fermented foods,	
Bakery and Confectionery, Alcoholic products and Beverages, Enzymes - Industrial production	
and applications. Biofertilizers and Biopesticides, SCP and SCO. Neutraceutical products.	
Unit -III	14 Hrs
Healthcare Entrepreneurship	
Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids),	
Alkaloids, Cosmetics, Biopigments and Bioplastics, Vaccines, Diagnostic tools and kits.	

ummative Assessment = 60 Marks	
Formative Assessment Occasion / type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60 marks + 40 marks = 100 marks

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

References

- 1 Srilakshmi, B. (2007). Dietetics. New Age International publishers. New Delhi
- 2 Srilakshmi, B. (2002). Nutrition Science. New Age International publishers. New Delhi
- 3 Swaminathan, M. (2002). Advanced text book on food and Nutrition. Volume I. Bappco
- 4 Gopalan, C. RamaSastry, B.V. and Balasubramanian, S.C (2009). Nutritive value of Indian Foods. NIN.ICMR.Hyderabad.
- 5 Mudambi S R and Rajagopal M V.2008. Fundamentals of Foods, Nutrition & diet therapy by New Age International Publishers, New Delhi. 5th edition.

Date:

Subject Committee Chairperson

Model Curriculum

Program Name	BSc Microbiology		Semester	Four	th Sem	
Course Title	Microbial Enz	icrobial Enzymology and Metabolism				
Course No.	MBL:104 DSC -4T		No. of Theory Credits	4		
Contact hours	56 hrs	56 hrs		Duration of ESA/Exam	2 Ho	ours
Formative Assessment Marks 40		Summative Assessment M	arks	60		

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content	56 Hrs
Unit–I	14 Hrs
Metabolism of Carbohydrates	
Concept of aerobic respiration, anaerobic respiration and fermentation. Sugar degradation	
pathways i.e. EMP, ED, Pentose phosphate pathway, Phosphoketolase pathway. TCA cycle.	
Fermentation - Fermentation balance, concept of linear and branched fermentation pathways.	
Fermentation pathways: Alcohol fermentation and Pasteur effect; Butyric acid and Butanol-	
Acetone Fermentation, Mixed acid and 2,3-butanediol fermentation, Propionic acid Fermentation,	
acetate fermentation.	
Chemolithotrophic metabolism: Chemolithotrophy -Oxidation of Hydrogen, Sulphur, Iron and	
Nitrogen.	
Anaerobic respiration with special reference to dissimilatory nitrate reduction and sulphate	
reduction.	
Unit -II	14 Hrs
Metabolism of aminoacids, nucleotides and lipids	
1.Nitrogen Metabolism	
Introduction to biological Nitrogen fixation, Ammonia assimilation. Assimilatory nitrate	
reduction, dissimilatory nitrate reduction, denitrification	
2. Biosynthesis of ribonucleotides and deoxyribonucleotides	
The de novo pathway of purines and pyrimidines, recycling by salvage pathway	
3. Amino acid degradation and biosynthesis: Deamination and decarboxylation- An overview	
of aminoacids biosynthesis	
4. Lipid degradation and biosynthesis: β-oxidation of palmitic acid; Biosynthesis of palmitic	
acid.	
5. Metabolism of one carbon compounds: Acetogens: Autotrophic pathway of acetate	
synthesis	

6. Metabolism of two-carbon compounds: Acetate: Acetic acid bacteria: Ethanol oxidation,	
sugar alcohol oxidation. Glyoxylate and glycolate metabolism: i. Dicarboxylic acid cycle, ii.	
Glycerate pathway iii. Beta hydroxyaspartate pathway	
Oxalate as carbon and energy source	
Unit -III	14 Hrs
Basics of Enzymes	
Introduction to enzymes–Definition, enzyme unit, specific activity and turnover number, exo/	
endoenzymes, constitutive/ induced enzymes, isozymes. Monomeric, Oligomeric and	
Multimeric enzymes.	
Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase. Ribozymes,	
abzymes	
Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD,	
metal cofactors.	
Classification of enzymes, Mechanism of action of enzymes: active site, transition state	
complex and activation energy. Lock and key hypothesis and Induced Fit hypothesis.	
Multisubstrate reactions -Ordered, Random and Ping-pong.	
Unit -IV	14 Hrs
Enzyme Kinetics and Regulation	
Enzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii. Steady state	
assumptions iii. Line weaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots. Kinetics of	
enzyme inhibition. Competitive, non-competitive and uncompetitive inhibition. Effect of changes	
in pH and temperature on enzyme catalyzed reaction. Kinetics of two substrate reactions. Pre	
steady state kinetics. Kinetics of immobilized enzymes	
Enzyme regulation: Allosteric enzyme - general properties, Hill equation, Koshland Nemethy	
and Filmer model, Monod Wyman and Changeux model. Covalent modification by various	
mechanisms. Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of	
multi-enzyme complex- Pyruvate dehydrogenase. Feedback inhibition.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

	Program Outcomes (POs)											
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism		~						✓			~	
Describing the enzyme kinetics, enzyme activity and regulation.		✓						✓			✓	
Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms		•						√			√	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks					
Formative Assessment Occasion / type	Weightage in Marks				
Attendance	10				
Seminar and Assignment	10				
Debates and Quiz	10				

Test	10
Total	60 marks + 40 marks = 100 marks

Course Title	Microbial Enzymole (Practical)	ogy and Metabolism	Practical Credits	2			
Course No.	MBL:104	DSC-4P	Contact hours				
		Content					
 Identifi Isolation Estimation Estimation Estimation Estimation Estimation Determination Estimation Determination Estimation 	ion of total lipid cation of fatty acids and n of lactose from bovine ion of total sugars by the ion of DNA - DPA meth ion of RNA (Orcinol me ination of molar absorpt ion of polyphenols/ tank stration of alcoholic ferr of variables on enzyme a me concentration	e milk e phenol-sulphuric acid nod & UV absorbance f ethod) ion coefficient (ε) of l-t nins by Folin- Denis me nentation	method tyrosine ethod	ubstrate concentration			
11. Determ equatio							
12. Identification of metabolic pathways through charts (Any 3)							

Practical assessment

	Assessment		
Formative ass	essment	Summative Assessment	
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks
Record	5		
Test	10	25	
Attendance	5	- 25	50
Performance	5		
Total	25	25	

References

1 Philipp. G. Manual of Methods for General Bacteriology.

2David T. Plummer. An Introduction to Practical Biochemistry

3Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E. 1981. Biochemistry- A Problem Approach, 2nd edition. The Benjamin/ Cummings Pub.co

4Segel I.R., 2nd edition., 2004, Biochemical calculations, John Wiley and Sons

5 Irwin H. Segel, 2nd Edition, Biochemical Calculations, John Wiley & Sons

Date:

Model Curriculum

Program Name	BSc Microbiology		Semester	Fourth Sem
Course Title	Human Microbi	ome		
Course Code	MBL:304 OE-4T		No. of Theory Credits	3
Contact hours	Lecture		Duration of ESA/Exam	Hours
Contact nours	Practical			
Formative Assessment Marks40Summative Assessment Marks60				arks 60

Course Pre-requisite(s):

Course Outcomes (**COs**): At the end of the course the student should be able to:

- 1. Articulate a deeper understanding on biological complexities of human micro biome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the micro biome of different human body sites and impact human health promotion

Unit-I INTRODUCTION TO MICROPIOME	
ΙΝΤΡΟΡΙΙΟΤΙΟΝ ΤΟ ΜΙΟΡΟΡΙΟΜΕ	14 Hrs
INTRODUCTION TO MICROBIOME	
Normal human microbiota and their role in health-gut microflora, skin microflora, microflora of	
reproductive and excretory system. Symbiotic and parasitic association.	
Unit -II	14 Hrs
MICROBIOMES AND HUMAN HEALTH	
Pre and post-natal Microbiome, Nutritional modulation of the gut microbiome for metabolic	
health -role of gut microbiomes in human obesity, human type 2 diabetes.	
Influence of microbiome in aging.	
Probiotics-Criteria for probiotics, Development of Probiotics for animal and human use; Pre	
and synbiotics. Functional foods-health claims and benefits, Development of functional	
foods.	
Unit -III	14 Hrs
CULTURING OF MICROBES FROM MICROBIOMES	
Culturing of organisms of interest from the microbiome: bacterial, fungal, and yeast.	
Study of the microbiome genome	
Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host	
immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition	

Pedagogy

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2 hours	
Formative Assessment Occasion / type	Weightage in Marks
Assignment	10
Seminar	10
Case studies	10
Test	10
Total	40 marks

References	
1	
2	
3	
4	
5	

Date:

Subject Committee Chairperson